Chemisorptive enantioselectivity of chiral epoxides on tartaric-acid modified Pd(111): three-point bonding.

نویسندگان

  • Mausumi Mahapatra
  • Wilfred T Tysoe
چکیده

The chemisorption of two chiral molecules, propylene oxide and glycidol, is studied on tartaric-acid modified Pd(111) surfaces by using temperature-programmed desorption to measure adsorbate coverage. It is found that R-glycidol shows preferential enantioselective chemisorption on (S,S)-tartaric acid modified Pd(111) surfaces, while propylene oxide does not adsorb enantioselectively. The enantioselectivity of glycidol depends on the tartaric acid coverage, and is exhibited for low tartaric acid coverages indicating that the bitartrate phase is responsible for the chiral recognition. The lack of enantioselectivity when using propylene oxide as a chiral probe implies that the enantiospecific interaction between glycidol and bitartate species is due to hydrogen-bonding interactions of the -OH group of glycidol. Scanning tunneling microscopy images were collected for tartaric acid adsorbed on Pd(111) under the same experimental conditions as used for enantioselective experiments. When tartaric acid is dosed at room temperature and immediately cooled to 100 K for imaging, individual bitartrate molecules were found. Density functional theory (DFT) calculations show that bitartrate binds to Pd(111) through its carboxylate groups and the -OH groups are oriented along the long axis of the bitartrate molecule. An enantiospecific interaction is found between glycidol and bitartate species where R-glycidol binds more strongly than S-glycidol to (S,S)-bitartate species by simultaneously forming hydrogen bonds with both the hydroxyl and carboxylate groups, thereby providing three-point bonding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing enantioselectivity on chirally modified Cu(110), Cu(100), and Cu(111) surfaces.

Temperature programmed desorption methods have been used to probe the enantioselectivity of achiral Cu(100), Cu(110), and Cu(111) single crystal surfaces modified by chiral organic molecules including amino acids, alcohols, alkoxides, and amino-alcohols. The following combinations of chiral probes and chiral modifiers on Cu surfaces were included in this study: propylene oxide (PO) on L-alanine...

متن کامل

Requirements for the formation of a chiral template.

The chemisorptive enantioselectivity of propylene oxide is examined on Pd(111) surfaces templated by chiral 2-methylbutanoate and 2-aminobutanoate species. It has been found previously that chiral propylene oxide is chemisorbed enantiospecifically onto Pd(111) surfaces modified by either (R)- or (S)-2-butoxide. The enantiomeric excess (ee) varied with template coverage, reaching a maximum of ap...

متن کامل

Enhanced hydrogenation activity and diastereomeric interactions of methyl pyruvate co-adsorbed with R-1-(1-naphthyl)ethylamine on Pd(111)

Unmodified racemic sites on heterogeneous chiral catalysts reduce their overall enantioselectivity, but this effect is mitigated in the Orito reaction (methyl pyruvate (MP) hydrogenation to methyl lactate) by an increased hydrogenation reactivity. Here, this effect is explored on a R-1-(1-naphthyl)ethylamine (NEA)-modified Pd(111) model catalyst where temperature-programmed desorption experimen...

متن کامل

Chiral Steering of Molecular Organization in the Limit of Weak Adsorbate-Substrate Interactions: Enantiopure and Racemic Tartaric Acid Domains on Ag(111)

The influence of intermolecular interactions involving molecular chiral centers on two-dimensional organization in the limit of a weak adsorbate-surface interaction has been studied with low-temperature scanning tunneling microscopy (STM) and density functional theory (DFT). A model system composed of a chiral organic molecule, tartaric acid, and an inert metallic surface, Ag(111), was employed...

متن کامل

Energetics of elementary reaction steps relevant for CO oxidation: CO and O2 adsorption on model Pd nanoparticles and Pd(111).

The energetics of elementary surface processes relevant for CO oxidation, particularly CO and 02 adsorption, were investigated by a direct calorimetric method on model Pd nanoparticles and on the extended Pd(111) single crystal surface. The focus of this study lies on a detailed understanding of how a nanometer scale confinement of matter affects the binding strength of gaseous adsorbates. We r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 7  شماره 

صفحات  -

تاریخ انتشار 2015